3.8.64 \(\int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx\) [764]

3.8.64.1 Optimal result
3.8.64.2 Mathematica [C] (warning: unable to verify)
3.8.64.3 Rubi [A] (verified)
3.8.64.4 Maple [B] (warning: unable to verify)
3.8.64.5 Fricas [F]
3.8.64.6 Sympy [F(-1)]
3.8.64.7 Maxima [F]
3.8.64.8 Giac [F]
3.8.64.9 Mupad [F(-1)]

3.8.64.1 Optimal result

Integrand size = 37, antiderivative size = 449 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\frac {2 \left (8 A b^4+3 a^4 (A-C)-a^2 b^2 (15 A+C)\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^4 \sqrt {a+b} \left (a^2-b^2\right ) d}+\frac {2 \left (6 a A b^2+8 A b^3-3 a^3 (A-C)-a^2 b (9 A+C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^3 \sqrt {a+b} \left (a^2-b^2\right ) d}+\frac {2 \left (A b^2+a^2 C\right ) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}-\frac {4 \left (2 A b^4-a^4 C-a^2 b^2 (4 A+C)\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \]

output
2/3*(A*b^2+C*a^2)*sin(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))^(3/2)/cos(d*x+ 
c)^(1/2)-4/3*(2*A*b^4-a^4*C-a^2*b^2*(4*A+C))*sin(d*x+c)/a^2/(a^2-b^2)^2/d/ 
cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2)+2/3*(8*A*b^4+3*a^4*(A-C)-a^2*b^2*( 
15*A+C))*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c 
)^(1/2),((-a-b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x 
+c))/(a-b))^(1/2)/a^4/(a^2-b^2)/d/(a+b)^(1/2)+2/3*(6*a*A*b^2+8*A*b^3-3*a^3 
*(A-C)-a^2*b*(9*A+C))*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1 
/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)* 
(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^3/(a^2-b^2)/d/(a+b)^(1/2)
 
3.8.64.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 7.36 (sec) , antiderivative size = 1421, normalized size of antiderivative = 3.16 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx =\text {Too large to display} \]

input
Integrate[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^ 
(5/2)),x]
 
output
-1/3*((-4*a*(9*a^4*A*b - 17*a^2*A*b^3 + 8*A*b^5 + a^4*b*C - a^2*b^3*C)*Sqr 
t[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[ 
(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[ 
c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a 
]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x 
]]*Sqrt[a + b*Cos[c + d*x]]) - 4*a*(3*a^5*A - 15*a^3*A*b^2 + 8*a*A*b^4 - 3 
*a^5*C - a^3*b^2*C)*((Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(( 
(a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Cs 
c[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d* 
x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/ 
((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (Sqrt[((a + b)*Cot 
[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2 
)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*Ellip 
ticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqr 
t[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + 
 b*Cos[c + d*x]])) + 2*(3*a^4*A*b - 15*a^2*A*b^3 + 8*A*b^5 - 3*a^4*b*C - a 
^2*b^3*C)*((I*Cos[(c + d*x)/2]*Sqrt[a + b*Cos[c + d*x]]*EllipticE[I*ArcSin 
h[Sin[(c + d*x)/2]/Sqrt[Cos[c + d*x]]], (-2*a)/(-a - b)]*Sec[c + d*x])/(b* 
Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[((a + b*Cos[c + d*x])*Sec[c + d 
*x])/(a + b)]) + (2*a*((a*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*S...
 
3.8.64.3 Rubi [A] (verified)

Time = 1.92 (sec) , antiderivative size = 467, normalized size of antiderivative = 1.04, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.297, Rules used = {3042, 3535, 27, 3042, 3534, 27, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3535

\(\displaystyle \frac {2 \int -\frac {-\left ((3 A-C) a^2\right )+3 b (A+C) \cos (c+d x) a+4 A b^2-2 \left (C a^2+A b^2\right ) \cos ^2(c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}}dx}{3 a \left (a^2-b^2\right )}+\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}-\frac {\int \frac {-\left ((3 A-C) a^2\right )+3 b (A+C) \cos (c+d x) a+4 A b^2-2 \left (C a^2+A b^2\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}}dx}{3 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}-\frac {\int \frac {-\left ((3 A-C) a^2\right )+3 b (A+C) \sin \left (c+d x+\frac {\pi }{2}\right ) a+4 A b^2-2 \left (C a^2+A b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}-\frac {\frac {2 \int -\frac {3 (A-C) a^4-b^2 (15 A+C) a^2+2 b \left (A b^2-a^2 (3 A+2 C)\right ) \cos (c+d x) a+8 A b^4}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {4 \left (a^4 (-C)-a^2 b^2 (4 A+C)+2 A b^4\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}-\frac {\frac {4 \left (a^4 (-C)-a^2 b^2 (4 A+C)+2 A b^4\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\int \frac {3 (A-C) a^4-b^2 (15 A+C) a^2+2 b \left (A b^2-a^2 (3 A+2 C)\right ) \cos (c+d x) a+8 A b^4}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a \left (a^2-b^2\right )}}{3 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}-\frac {\frac {4 \left (a^4 (-C)-a^2 b^2 (4 A+C)+2 A b^4\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\int \frac {3 (A-C) a^4-b^2 (15 A+C) a^2+2 b \left (A b^2-a^2 (3 A+2 C)\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a+8 A b^4}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}}{3 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}-\frac {\frac {4 \left (a^4 (-C)-a^2 b^2 (4 A+C)+2 A b^4\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\left (3 a^4 (A-C)-a^2 b^2 (15 A+C)+8 A b^4\right ) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+(a-b) \left (-3 a^3 (A-C)-a^2 b (9 A+C)+6 a A b^2+8 A b^3\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{a \left (a^2-b^2\right )}}{3 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}-\frac {\frac {4 \left (a^4 (-C)-a^2 b^2 (4 A+C)+2 A b^4\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\left (3 a^4 (A-C)-a^2 b^2 (15 A+C)+8 A b^4\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+(a-b) \left (-3 a^3 (A-C)-a^2 b (9 A+C)+6 a A b^2+8 A b^3\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}}{3 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}-\frac {\frac {4 \left (a^4 (-C)-a^2 b^2 (4 A+C)+2 A b^4\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\left (3 a^4 (A-C)-a^2 b^2 (15 A+C)+8 A b^4\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (a-b) \sqrt {a+b} \left (-3 a^3 (A-C)-a^2 b (9 A+C)+6 a A b^2+8 A b^3\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a \left (a^2-b^2\right )}}{3 a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}-\frac {\frac {4 \left (a^4 (-C)-a^2 b^2 (4 A+C)+2 A b^4\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\frac {2 (a-b) \sqrt {a+b} \left (3 a^4 (A-C)-a^2 b^2 (15 A+C)+8 A b^4\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}+\frac {2 (a-b) \sqrt {a+b} \left (-3 a^3 (A-C)-a^2 b (9 A+C)+6 a A b^2+8 A b^3\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a \left (a^2-b^2\right )}}{3 a \left (a^2-b^2\right )}\)

input
Int[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^(5/2)) 
,x]
 
output
(2*(A*b^2 + a^2*C)*Sin[c + d*x])/(3*a*(a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*(a 
+ b*Cos[c + d*x])^(3/2)) - (-(((2*(a - b)*Sqrt[a + b]*(8*A*b^4 + 3*a^4*(A 
- C) - a^2*b^2*(15*A + C))*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c 
+ d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 
- Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a^2*d) + 
(2*(a - b)*Sqrt[a + b]*(6*a*A*b^2 + 8*A*b^3 - 3*a^3*(A - C) - a^2*b*(9*A + 
 C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*S 
qrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + 
b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d))/(a*(a^2 - b^2))) + (4*(2* 
A*b^4 - a^4*C - a^2*b^2*(4*A + C))*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[Cos 
[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]))/(3*a*(a^2 - b^2))
 

3.8.64.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 3535
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(A*b^2 + a^2*C))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*S 
in[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m 
+ 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin 
[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*(m + n 
+ 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d 
*(A*b^2 + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 
- d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) || 
 !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 
 0])))
 
3.8.64.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(6288\) vs. \(2(417)=834\).

Time = 10.68 (sec) , antiderivative size = 6289, normalized size of antiderivative = 14.01

method result size
default \(\text {Expression too large to display}\) \(6289\)
parts \(\text {Expression too large to display}\) \(6343\)

input
int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*b)^(5/2),x,method=_R 
ETURNVERBOSE)
 
output
result too large to display
 
3.8.64.5 Fricas [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(5/2),x, al 
gorithm="fricas")
 
output
integral((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c) 
)/(b^3*cos(d*x + c)^5 + 3*a*b^2*cos(d*x + c)^4 + 3*a^2*b*cos(d*x + c)^3 + 
a^3*cos(d*x + c)^2), x)
 
3.8.64.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate((A+C*cos(d*x+c)**2)/cos(d*x+c)**(3/2)/(a+b*cos(d*x+c))**(5/2),x)
 
output
Timed out
 
3.8.64.7 Maxima [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(5/2),x, al 
gorithm="maxima")
 
output
integrate((C*cos(d*x + c)^2 + A)/((b*cos(d*x + c) + a)^(5/2)*cos(d*x + c)^ 
(3/2)), x)
 
3.8.64.8 Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(5/2),x, al 
gorithm="giac")
 
output
integrate((C*cos(d*x + c)^2 + A)/((b*cos(d*x + c) + a)^(5/2)*cos(d*x + c)^ 
(3/2)), x)
 
3.8.64.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

input
int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^(5/2)) 
,x)
 
output
int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^(5/2)) 
, x)